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Abstract. Lattice models of adsorbing branched copolymers are examined. In particular, the
existence of limiting free energies and the occurance of adsorption transitions are proven. The
location of the adsorption critical points in quenched and annealed models of lattice branched
copolymers are related and compared with the adsorption of branched homopolymers. Finally, we
show that a certain quenched model of adsorbing branched copolymers is self-averaging.

1. Introduction

A lattice model of linear homopolymer adsorption was introduced in 1982 [13]. Since that
paper, the adsorption problem for walk models of linear polymers has received considerable
attention in the literature. For example, directed models of adsorbing walks have received
attention [4, 10, 20, 25], and the adsorption problem for the self-avoiding walk has also been
considered [2,3,9,23]. More recently, the adsorption problem for linear copolymers has been
examined [5,16,18,21,22,24,26]. Related problems of self-interacting linear copolymers with
quenched randomness were examined by Kantor and Kardar [17], Grassberger and Hegger [12],
and by Golding and Kantor [11].

Lattice tree models of adsorbing branched polymers were introduced in [6,7] and [8]. In
this paper we consider a variety of lattice tree models of branched copolymer adsorption. We
first consider a model of an alternating branched copolymer. The existence of a limiting free
energy in this model is shown, and it is demonstrated that there is an adsorption transition in
this model. Next, we examine a model of a block branched copolymer, and show that it adsorbs
at the same critical value of the fugacity as a branched homopolymer model. The existence of
a limiting free energy in a particular model of quenched branched copolymers is examined in
section 4, where we also show that this model is self-averaging.

A good starting point for the discussion is a brief review of the adsorption problem in a
lattice model of branched homopolymers. Lettn be the number of lattice trees withn edges,
counted modulo translation. The coordinates of a vertexv in the lattice will be denoted by
(X(v), Y (v), . . . , Z(v)) in d dimensions, whereX is the first coordinate, andZ is always the
last (ordth) coordinate. The adsorption plane is the hyperplane defined by{v ∈ Zd |Z(v) = 0},
that is, all those vertices withZ-coordinate equal to zero. A lattice tree isattachedif it has a
vertexv with Z-coordinate in the set{1, 0,−1} (that is, it is close to the adsorbing plane). A
positive treeis an attached tree withZ-coordinates of all its vertices non-negative. The number
of attached trees will be denoted bytn, and the number of positive trees byt+n . A model of
adsorbing branched polymers is obtained by counting attached and positive trees with respect
to the number of vertices they have in the adsorbing plane (these are calledvisits). The basic
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quantities are thentn(v) andt+n (v); wheretn(v) is the number of attached trees withv visits,
andt+n (v) is the number of positive trees withv visits. The interaction with the adsorbing plane
is modelled by introducing avisit-fugacityα, with α conjugate to the number of visits in the
tree. It is known that there is an adsorption transition in these models at a critical value of the
visit-fugacity [15]. The partition function for positive attached trees is

Z+
n(α) =

∑
v>0

t+n (v)e
αv (1)

and the partition function of attached trees are similarly defined. At negative values of the
parameterα the trees are desorbed. Increasingα should lead through an adsorption transition
into an adsorbed phase. The limiting free energies of these models are the thermodymic limits
of logZn(α) and logZ+

n(α) per edge; these are known to exist [15], and in the case of positive
trees are defined by

F+
d (α) = lim

n→∞
1

n
logZ+

n(α) (2)

for all α < ∞. The limiting free energy of attached treesFd(α) is similarly defined.
Moreover,Fd(α) andF+

d (α) are convex functions, and are non-decreasing, continuous, and
differentiable almost everywhere [15]. Furthermore, it is known that the limiting free energy
F+
d (α) is independent ofα for all α 6 0 (that is,F+

d (α) = Fd(0) for all α 6 0), and
max{Fd(0),Fd−1(0)+α} 6 F+

d (α) 6 Fd(0)+α for α > 0. These bounds imply the existence
of a non-analyticity at a critical valueαhc in the free energy of positive trees, and this corresponds
to the adsorption transition of a homopolymer on a solid adsorbing plane. The critical value
of the fugacity may be defined by

αhc = sup{α|F+
d (α) = Fd(0)} (3)

and it is known thatαhc > 0 [15].
A lattice model of a branched copolymer can be defined by colouring the vertices in a

lattice tree. Each colour corresponds to a different type of monomer. There are a variety of
ways of defining the models, depending on a rule for assigning colours to vertices. A simple
model of a branched copolymer can be defined by colouring vertices in a tree with two colours,
say red and blue, in an alternating fashion. That is, colour a vertex (say the bottom vertex) of a
tree red, and then continue by colouring all nearest-neighbour vertices of red vertices blue, and
all nearest neighbours of blue vertices red. Since the tree is a bipartite graph, this colouring
can always be completed. Observe that there are two possible colourings for each tree, and that
both are included in the ensemble. The adsorption of such an alternating branched copolymer
model is examined in section 2. Block copolymers are also considered in section 3.

A different model is obtained if the tree is coloured in a random fashion. For example, let
χ be a (random) sequence of colours. The colours inχ can be assigned to vertices in a tree by
colouring the vertices in the tree in lexicographic order, we shall refer to this as alexicographic
colouringbyχ . This model is a simplification of more realistic colourings, where the ordering
is determined by the underlying graph (of the tree), and not by the embedding. In this model it
is possible to take the average over all possible colourings. If the partition function is averaged
overχ then anannealed modelis found. If the free energy is averaged, theaveraged quenched
modelis the result. The model islexicographic quenchedif the colouring is fixed.

Let t+n (vR, vB |χ) be the number of positive trees withn edges, with vertices coloured
lexicographically by the random sequenceχ , with vR + vB visits, of whichvR are red visits
(orR-visits) andvB blue visits (orB-visits). The partition function of this model is

Z+
n(αR, αB |χ) =

∑
vR,vB

t+n (vR, vB |χ)eαRvR+αBvB (4)



A lattice tree model of branched copolymer adsorption 1173

whereαR andαB are visit-fugacities associated with red and with blue visits, respectively.
In general one would be interested in the existence of the limiting free energy of a particular
quenched, an annealed averaged ensemble and quenched averaged ensembles, with respect to
the lexicographic colouring of the vertices byχ . These are defined, respectively, by

F+
d (αR, αB |χ) = lim

n→∞
1

n
logZ+

n(αR, αB |χ) (5)

Fad (αR, αB) = lim
n→∞

1

n
log〈Z+

n(αR, αB |χ)〉χ (6)

Fqd (αR, αB) = lim
n→∞

1

n
〈logZ+

n(αR, αB |χ)〉χ . (7)

Adsorption transitions in these models will be signalled by non-analyticities at critical values
of the fugacitiesαR or αB .

2. Alternating copolymer adsorption

As a simple model we discuss alternating branched copolymers. This is an example of a
model of quenched branched copolymers adsorbing in the planeZ = 0. A lattice treeT can
be coloured alternately with two colours red(R) and blue(B) by first colouring the bottom
vertex (lexicographic least vertex) ofT with (say)R. Continue then by colouring all nearest
neighbours ofR-vertices byB, and all nearest-neighbour vertices ofB-vertices byR. SinceT
is bipartitite, the colouring will always be completed, and it will be alternating since all pairs
of adjacent vertices will be of opposite colours. Notice that there are two distinct colourings
for everyT . Let t+n (vR, vB |al) be the number of positive trees ofn edges, coloured alternating
R andB, and withvR red visits andvB blue visits. The partition function of this model is

Z+
n(αR, αB |al) =

∑
vR,vB

t+n (vR, vB |al)eαRvR+αBvB . (8)

The existence of a limiting free energy in this model is shown by using concatenation and
a theorem on supermultiplicative functions. In this case a new result, related to a theorem
of Wilker and Whittington [27], is needed. In general, a supermultiplicative inequality of
the typebnbm 6 bn+m+o(n+m) will be obtained. Taking logarithms, and defining a function
fn,m = m + o(n +m), and definingan = − logbn, the result is a submultiplicative inequality
an + am > an+fn,m , wherefn,m is restricted by its definition. In general, the restrictions onfn,m
can be somewhat relaxed, while it is still possible to show that the limit limn→∞[an/n] exists.
This is done in theorem 1.

Theorem 1. Suppose thatan is a function from the natural numbers into integers, such that
an − an−1 = un whereun = o(n), and suppose thatan satisfies the generalized subadditivity
relation

an + am > an+fn,m

wherefn,m is a function with the properties that there are functionsφm and a constantφ defined
by

sup
n>0
{fn,m} = φm sup

m>0
{φm/m} = φ <∞

and a functionψm defined by

inf
n>0
{fn,m} = ψm where lim

m→∞[ψm/m] = 1
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exists. Suppose furthermore thatinf n>0{an/n} > C0, whereC0 is a constant. Then the limit

lim
n→∞[an/n] = ν

exists, and is finite. Moreover,an > ψnν.

Proof. Fix a (large) integerm > 0 and recursively definem0 = m,mp = mp−1 + fmp−1,m0 for
p = 1, 2, . . . . Then

amp = amp−1+fmp−1,m0
6 amp−1 + am0 6 · · · 6 pam0.

Choose ann, and letp be the largest integer such thatn > mp, sayn = mp + r. Then
r 6 fmp,m0 6 φm0. Sincean − an−1 = o(n), it also follows thatan = an−r + vn with
vn = o(n)m0φ (notice thatr 6 m0φ). Thus,

an = an−r + vn = amp + vn 6 pam0 + vn.

Observe thatmp =
∑p−1

i=0 fmi,m0 > pψm0. Divide the previous inequality byn, and use this
lower bound onmp. This gives

an

n
6 am0

ψm0

+
vn

pψm0

.

Now take the lim sup asn → ∞ with m0 fixed. Thenp → ∞, and sincemp 6 pφm0, the
p-dependence ofvn is o(n)m0φ = o(mp) = o(p), so thatvn = o(p). Thus

lim sup
n→∞

an

n
6 am0

ψm0

.

Now take the lim inf asm0→∞ on the right-hand side to show that the limit exists as claimed.
Next, the last equation shows thatam > ψmν, and the finiteness ofν follows from the bound
inf n>0{an/n} > C0. �

The existence of a limiting free energy in this model can be shown, by applying the result in
theorem 1 to a supermultiplicative inequality obtained by concatenating trees. Concatenation
of two trees are usually conveniently done by defining in each a lexicographic most vertex (the
top vertex), and a lexicographic least vertex (thebottom vertex). If the trees are translated so
that the top vertex of the first tree is one lattice edge in the first direction from the bottom edge
of the second, then the trees can be concatenated by inserting an edge between these vertices.
This gives the inequalitytntm 6 tn+m+1. Two trees can also be concatenated by translating one
until there is a pair of vertices a unit distance apart, and then inserting an edge to concatenate
them. In general this situation is more difficult to analyse, but for attached trees the situation
is not complicated. This is done in the proof of theorem 2.

Theorem 2. The limiting free energy

F+
d (αR, αB |al) = lim

n→∞
1

n
logZ+

n(αR, αB |al)

exists for all finite values ofαR andαB .

Proof. Let T1 andT2 be two positive trees counted byt+n (v1R, v1B |al) andt+m(vR − v1R, vB −
v1B |al) respectively. TranslateT2 parallel to theZ = 0 hyperplane until its bottom vertex has
the same coordinates as the top vertex ofT1, except for theX- andZ-coordinates. Translate
T2 in theX-direction until theX-coordinate of its bottom vertex is two steps bigger than the
X-coordinate of the top vertex ofT1. Next we translateT2 in the negativeX-direction, until
there is a vertex inT2 which is within a distance of two steps from a vertex inT1. Letw1 in
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Figure 1. Concatenation of two alternating trees. Full circles (red vertices) and open circles (blue
vertices) represent different types of vertices.t is the top vertex ofT1 andb is the bottom vertex of
T2. We concatenateT1 andT2 by adding a blue vertex(w) and two edges (dashed lines).

T1 andw2 in T2 be two vertices which are exactly two steps apart. If they are bothR-vertices
(orB-vertices) we concatenateT1 andT2 by adding oneB-vertex (orR-vertex) and two edges
betweenw1 andw2. If they are coloured differently, then we translateT2 one more step in the
negativeX-direction and concatenateT1 andT2 by adding one edge betweenw1 andw2. Since
T1 has sizen, this construction can always be undone by finding that edge in the concatenated
tree whose deletion will give a subtree of sizen (see figure 1). Moreover, each distinct pair of
trees will give a different outcome, thus

vR∑
v1R=0

vB∑
v1B=0

t+n (v1R, v1B |al)t+m(vR − v1R, vB − v1B |al) 6
2∑
k=1

1∑
i,j=0

t+n+m+k(vR + i, vB + j |al).

Multiply this equation by eαRvR+αBvB , and sum overvR andvB . This gives

Z+
n(αR, αB |al)Z+

m(αR, αB |al) 6 (1 + e−αR )(1 + e−αB )
2∑
k=1

Z+
n+m+k(αR, αB |al).

Definern,m as that value ofk which maximizes the right-hand side. Then

Z+
n(αR, αB |al)Z+

m(αR, αB0|al) 6 2(1 + e−αR )(1 + e−αB )Z+
n+m+rm,n (αR, αB |al) (9)

where|rm,n| 6 2, and notice thatn−1 logZ+
n(αR, αB |al) is bounded above since

Z+
n(αR, αB |al) 6 t+n (al)e(n+1)max{1,αR+αB }.

Take the logarithms of equation (9) and multiply the result by negative one. The resulting
subadditive inequality is of the form discussed in theorem 1. Thus, the limiting free
energy exists for all finiteαR and αB , and moreover, since|rm,n| 6 2, it follows that
Z+
m(αR, αB |al) 6 e(m+2)F+

d (αR,αB |al) for everym. �

The existence of an adsorption transition in this model is shown using the same techniques
as in the case of a homopolymer model. In particular, bounds on the limiting free energy can
be derived to show that it is constant for negative values of the fugacityα, and non-constant
for some positive values ofα. This model is also easily related to an adsorbing branched
homopolymer by identifyingR-vertices andB-vertices; note also thatt+n (al) = 2 t+n so that
from equation (1) the homopolymer partition function is given by

Z+
n(α) = 1

2

∑
vR,vB

t+n (vR, vB |al)eα(vR+vB). (10)

The existence of a limiting free energyF+
d (α) in this model is known [15], and is given by

equation (2). Moreover, the critical fugacity isαhc given by equation (3), and that it is strictly
positive was shown in [15]. It is also possible to show that there is an adsorption transition in
this model of branched alternating copolymers.
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Theorem 3. The limiting free energyF+
d (αR, αB |al) is independent ofαR and αB for all

αR 6 αhc and αB 6 αhc (that is, F+
d (αR, αB |al) = Fd(0) for αR 6 αhc and αB 6 αhc ).

On the other hand, if eitherαR > αhc , or αB > αhc , or both, then

max{Fd(0),Fd−1(0) + (αR + αB)/2} 6 F+
d (αR, αB |al) 6 Fd(0) + max{αR, αB}.

Proof. Suppose thatαR 6 αhc and thatαB 6 αhc . Then from equation (10),

Z+
n(min{αR, αB}) 6 Z+

n(αR, αB |al) 6 Z+
n(α

h
c , α

h
c |al) = 2Z+

n(α
h
c )

whereαhc is defined in equation (3). This shows thatF+
d (αR, αB |al) = Fd(0) whenever

αR 6 αhc andαB 6 αhc .
Next, suppose that eitherαR > αhc or αB > αhc or both. Consider that subclass of trees

with every vertex a visit. This shows that

t (d−1)
n ebn/2cαR+dn/2eαB 6 Z+

n(αR, αB |al)

and so

Fd−1(0) + (αR + αB)/26 F+
d (αR, αB |al).

Lastly, by equation (10),

Z+
n(αR, αB |al) 6 2Z+

n(max{αR, αB}) 6 2t+nemax{αR,αB }(n+1).

Thus,F+
d (αR, αB) 6 F+

d (max{αR, αB}) 6 F+
d (0)+max{αR, αB}. This completes the proof.�

The results in theorem 3 imply that there is a non-analyticity inF+
d (αB, αR) which

corresponds to an adsorption transition in this model. Notice that

Z+
n(αR, αB |al) 6 2Z+

n(max{αR, αB})
which implies that if max{αR, αB} 6 αhc then the tree is desorbed. Next,Z+

n(αR, αB |al) >
Z+
n(min{αR, αB}) so that if min{αR, αB} > αhc then the adsorbed phase must be found. This

can be strengthened by noting thatZ+
n(αR, αB |al) = Z+

n(αB, αR|al) so that

2Z+
n(αR, αB |al) =

∑
vA,vB

t+n (vA, vB |al)[eαRvR+αBvB + eαRvB+αBvR ]

> 2
∑
vA,vB

t+n (vA, vB |al)[e(αR+αB)(vA+vB)/2]

= 2Z+
n

(αR + αB
2

,
αR + αB

2

∣∣∣ al
)
> 2Z+

n

(αR + αB
2

)
(11)

if convexity of the exponential is used. This shows that ifαR + αB > 2αhc then the adsorbed
phase must be found. Thus, the adsorption transitions in the(αR, αB)-plane lie on the region
defined by (see figure 2)

αR + αB 6 2αhc
max{αR, αB} > αhc .

(12)

The limiting free energy, and bounds on it (similar to those in theorems 2 and 3) of a self-
avoiding walk model of adsorbing alternating linear copolymers is also known to exist [25].
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Figure 2. The adsorption transitions of alternating branched copolymers in the(αR, αB)-plane is
located along the dashed curve.

3. Adsorption of a branched block copolymer

A copolymerT with red (R) and blue(B) vertices is ablock-copolymerif there is an edge
e in T so thatT − e= U ∪ V with U a red homopolymer andV a blue homopolymer. Let
t+n1,n2

(vR, vB |bl) be the number of lattice trees withn1 + n2− 1= n edges,n1 R-vertices with
vR R-visits andn2 B-vertices withvB B-visits. A model of an adsorbing block copolymer is
defined through the partition function

Z+
n1,n2

(αR, αB |bl) =
∑
vR,vB

t+n1,n2
(vR, vB |bl)eαRvR+αBvB . (13)

We will limit the discussion to a model wheren1 (andn2) are functions ofn (the number of
edges) such that

lim
n→∞

n1

n + 1
= a (14)

wherea is a real number in the interval [0, 1].

Theorem 4. The limiting free energylimn→∞ n−1 logZ+
n1,n2

(αR, αB |bl) exists and is equal to
aF+

d (αR) + (1− a)F+
d (αB).

Proof. Let t+n (v) be the number of positive trees withn edges andv visits. LetT be a tree
counted byt+n1,n2

(vR, vB |bl), and letan = n1/(n + 1). Then limn→∞ an = a, by equation (14).
There is also an edgee in T so thatT − e is composed of two monochromatically coloured
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trees: anR-tree counted byt+n1−1(vR) and aB-tree counted byt+n2−1(vB). These trees can be
reconnected in at most(n1n2)

2d ways to recoverT . This shows that

t+n1,n2
(vR, vB |bl) 6 (n1n2)

2d t+n1−1(vR)t
+
n2−1(vB).

Multiply this equation by eαRvR+αBvB and sum over bothvR andvB . By equations (1) and (13)
the outcome is the generalized submultiplicative inequality

Z+
n1,n2

(αR, αB |bl) 6 (n1n2)
2dZ+

n1−1(αR)Z
+
n2−1(αB). (15)

Take the logarithm of this inequality, divide byn and letn → ∞. This takesn1 to infinity
throughn1 = (n + 1)an, andn2 = n + 1− n1. The result is that

lim sup
n→∞

1

n
logZ+

n1,n2
(αR, αB |bl) 6 aF+

d (αR) + (1− a)F+
d (αB). (16)

Next, concatenate a tree counted byt+n1−1(vR) with a tree counted byt+n2−1(vB), using the
construction in figure 1. The result is

t+n1−1(vR)t
+
n2−1(vB) 6 t+n1,n2

(vR, vB |bl).

Multiplying this equation by eαRvR+αBvB , and summing overvR andvB gives

Z+
n1
(αR)Z

+
n2
(αB) 6 Z+

n1,n2
(αR, αB |bl).

Taking the logarithm, dividing byn, and lettingn→∞ gives

lim inf
n→∞

1

n
logZ+

n1,n2
(αR, αB |bl) > aF+

d (αR) + (1− a)F+
d (αB).

Comparison with equation (16) then finishes the proof. �

The corollary to theorem 4 is that a block copolymer adsorbs at the same critical value of
the fugacity as a homopolymer. Indeed, the critical values ofαR andαB is defined by

max{αR, αB} = αhc . (17)

Observe that this equation is only true if there is a non-zero density of visits of a given colour.
The model above also generalizes to block copolymers with more than two blocks.

In particular, definet+n1,n2,...,nk
(v1, v2, . . . , vk|bl) to be number of positive treesT with

(n1, n2, . . . , nk) vertices and(v1, v2, . . . , vk) visits of colours(1, 2, . . . , k), such that there
are(k − 1) edges{e1, e2, . . . , ek−1} so thatT − {e1, e2, . . . , ek−1} = ∪ki=1Vi whereVi is a
monochromatic homopolymer of colouri. The construction leading to equation (15) then
shows that

t+n1,n2,...,nk
(v1, v2, . . . , vk|bl) 6 n4dk

k∏
i=1

t+ni−1(vi) (18)

wheren =∑k
i=1 ni − 1 and concatenatingk trees gives

t+n1,n2,...,nk
(v1, v2, . . . , vk|bl) >

k∏
i=1

t+ni−1(vi). (19)

Multiplication by e
∑k

i=1 αivi , and summing over thevi gives corresponding inequalities which
leads to a limiting free energy in this model in terms of linear combinations ofF+

d (αi). The
block copolymer adsorbs whenever any of theαi = αhc .
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4. Random branched copolymer adsorption

In the previous sections we have considered the adsorption of two models of quenched branched
polymers. In this section we turn our attention to models of quenched and random branched
copolymers. The focus will again be on copolymers composed of only two types of monomers
(red and blue), but the techniques here may be applied to models with more than two types
of monomers. Random linear copolymers in interacting models in both the annealed and
quenched ensembles have been examined in [18,19] and [26]. In the next paragraph we show
that an averaged annealed model is similar to a model of homopolymers.

An annealed model of random branched copolymers is obtained if each vertex in a positive
lattice tree is assigned a random colour, sayR with probabilityp, and otherwiseB. Then the
probability thatw vertices in a tree withn + 1 vertices will be colouredR, and the restB,
is given by the binomial distribution

(
n+1
w

)
pw(1− p)n+1−w. Let t+n (v) be the number of trees

with n edges andv visits. Then the partition function of adsorbing branched copolymers in an
annealed ensemble is given by

Z+,a
n (αR, αB, p) =

n+1∑
v=0

t+n (v)

v∑
w=0

(
v

w

)
pw(1− p)v−weαRw+αB(v−w). (20)

Executing the sum overw above gives

Z+,a
n (αR, αB, p) =

n+1∑
v=0

t+n (v)(e
αRp + (1− p)eαB )v = Z+

n(e
αRp + (1− p)eαB ) (21)

whereZ+
n(α) is defined in equation (1), and soFad (αR, αB |p) = F+

d (log(eαRp + eαB (1− p))).
Thus, the critical adsorption fugacity in the annealed ensemble can be computed in terms of
the critical adsorption fugacity of homopolymers. In the(αR, αB) parameter space, the critical
curve is defined by the curve

eαRp + (1− p)eαB = eα
h
c . (22)

This can be seen from equation (21), and it defines a desorbed and an adsorbed phase.
Equation (21) also shows that the annealed model of random branched copolymer adsorption
is equivalent to homopolymer adsorption, and no more need be said about that model. Observe
that the argument here is very general, and applies also to other annealed models, such as linear
copolymers, and self-interacting copolymers [19].

A more interesting situation arises when the self-averaging of models of adsorbing random
branched copolymers are considered. In the case of branched copolymers an immediate issue
is the colouring of vertices. There are two parts to colouring the vertices of a tree. The first
is a sequence of coloursχ = (χ1, χ2, . . . , ), and the second is a rule for assigning colourχi
to a vertex in the tree. A random sequence of colours is generated as follows. Letχi ∈ Y ,
whereY is a probability space. Thenχ ∈ X = Y × Y × Y × · · · . Thus, a random sequence
χ of identically distributed and independent colours can be selected. Next, these colours must
be assigned to vertices to define a ‘quenched model’ of an adsorbing copolymer. The basic
recipe is to label the vertices in a lattice tree by integers(1, 2, . . .), and then to assign colour
χj to vertexj . In this paper we will use the following lexicographic rule.

Lexicographic quenched branched copolymers.Order the vertices in a lattice tree
lexicographically. Assign colours in lexicographic increasing order to the vertices.
It is important to note in this case that the colouring of the tree is dependent on its
particular conformation in the lattice.
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In section 4.1 we first consider a model of lexicographic quenched branched polymers
with χ an alternating sequence. A simple concatenation such as in figure 1 is not enough to
show existence of a limiting free energy, instead, concatenation combined with a most popular
class argument is needed. In section 4.2 we consider the limiting free energy in an averaged
quenched model of branched copolymers, and in section 4.3 the issue of self-averaging in this
model is considered.

4.1. Adsorption of an alternating lexicographic quenched branched copolymer

Let ξ be the alternating sequence{R,B,R,B, . . .}, and lett+n (vR, vB |ξ) be the number of
positive trees, coloured lexicographically byξ , and withn edges,vR R-visits andvB B-visits.
Define the partition function

Z+
n(αR, αB |ξ) =

n+1∑
vR,vB=0

t+n (vR, vB |ξ)eαRvR+αBvB . (23)

The existence of a limiting free energy in this model can be shown using a most popular
argument. Thebottom vertexof a positive tree is its lexicographic least vertex, and thetop
vertexof a positive tree is its lexicographic most vertex. Let the number of positive trees
with bottom vertex a heighthb, and top vertex a heightht , above the adsorbing planeZ = 0
bet+n (vR, vB |ξ |[hb, ht ]), and let the partition function in this model beZ+

n(αR, αB |ξ |[hb, ht ]).
Notice thatt+n (vR, vB |ξ |[hb, ht ]) = t+n (vR, vB |ξ |[ht , hb])by symmetry. In addition, the heights
[hb, ht ] can only assume at most(n+1)2 values, and there is a most popular pair of heights, say
[h∗b, h

∗
t ], which contributes at least as much as any other pair to the partition function. Thus

Z+
n(αR, αB |ξ |[h∗b, h∗t ]) 6 Z+

n(αR, αB |ξ) 6 n2Z+
n(αR, αB |ξ |[h∗b, h∗t ]) (24)

and so we only have to consider the partition function of trees with most popular heights. With
these definitions the existence of the limiting free energy can be proven.

Theorem 5. The limiting free energy

Fqd (αR, αB |ξ) = lim
n→∞

1

n
logZ+

n(αR, αB |ξ)
exists for all finite values ofαR andαB in the alternating lexicographically quenched model
of branched copolymer adsorption.

Proof. Consider a treeT1 counted byt+n (vR − v1R, vB − v1B |ξ |[hh]) and a treeT2 counted by
t+m(v1R, v1B |ξ |[hh]). TranslateT1 andT2 along the adsorbing plane until the top vertext1 of
T1 is two steps removed in theX-direction from the bottom vertexb2 of T2 (since these have
the same heights, this is always possible). Ift1 andb2 have the same colours (say blue), then
insert an extra red vertex between them, and two edges, to join the trees into a single tree. This
tree is surely coloured in a lexicographically alternating fashion, since every vertex ofT1 is
lexigraphically less than any vertex inT2. If t1 andb2 have different colours, then translateT2

until t1 is one step in thex-direction fromb2, and add a single edge to obtain a new tree, also
coloured in a lexicographically alternating fashion. The number of edges may change by 1 or
by 2, and the new vertex may also be a visit (and either be blue or be red). This shows that∑
v1R,v1B

t+n (vR − v1R, vB − v1B |ξ |[hh])t+m(v1R, v1B |ξ |[hh])

6
2∑
k=1

1∑
i,j=0

t+n+m+k(vR + i, vB + j |ξ |[hh]).
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Multiply this by eαRvR+αBvB and sum over bothvR andvB . The result is that

Z+
n(αR, αB |ξ |[hh])Z+

m(αR, αB |ξ |[hh])

6 (1 + e−αR )(1 + e−αB )
2∑
k=1

Zn+m+k(αR, αB |ξ |[hh]).

Choosek = r(n,m) to be that value ofk which maximizes the right-hand side of the equation.
Then

Z+
n(αR, αB |ξ |[hh])Z+

m(αR, αB |ξ |[hh])

6 2(1 + e−αR )(1 + e−αB )Zn+m+r(n,m)(αR, αB |ξ |[hh])

and since|r(n,m)| 6 2 we can use theorem 1 to show that the limit

lim
n→∞

1

n
logZ+

n(αR, αB |ξ |[hh]) = F+
d (αR, αB |ξ)

exists. Next, notice that there are most popular choices for [hh] in Z+
n(αR, αB |ξ |[hh]), say

[h∗h∗]. Note also that

(Z+
n(αR, αB |ξ |[h∗h∗]))2 6 (Z+

n(αR, αB |ξ |[h∗bh∗t ]))2

6 (1 + e−αR )(1 + e−αB )
2∑
k=1

Z2n+k(αR, αB |ξ |[h∗bh∗b])

by exploiting the fact thatt+n (vR, vB |ξ |[hb, ht ]) = t+n (vR, vB |ξ |[ht , hb]). In other words, from
these inequalities and equation (24), it follows that

Fqd (αR, αB |ξ) = lim
n→∞

1

n
logZ+

n(αR, αB |ξ).
This completes the proof. �

The existence of an adsorption transition in this model follows by using the same
techniques used in theorem 3. The limiting free energyFqd (αR, αB |ξ) is independent of
αR andαB for all αR 6 αhc andαB 6 αhc (that is,Fqd (αR, αB |ξ) = Fd(0) for αR 6 αhc and
αB 6 αhc ). Next, notice thatFqd (αR, αB |ξ) = Fqd (αB, αR|ξ) and argue as in section 2 to see
that if αR + αB > 2αhc then the tree is adsorbed (see figure 2).

4.2. Branched copolymer adsorption in the averaged lexicographic quenched ensemble

LetZ+
n(αR, αB |χ) be defined as before (equation (23)). The averaged lexicographic quenched

limiting free energy is defined byFqd (αR, αB) = limn→∞ 1
n
〈logZ+

n(αR, αB |χ)〉χ , where the
average is over all colouringsχ in the spaceX. That this limit exists is seen in the next theorem,
and it too relies on the use of a most popular class argument.

Theorem 6. There exists a limiting free energy in the averaged lexicographic quenched
ensemble:

Fqd (αR, αB) = lim
n→∞

1

n
〈logZ+

n(αR, αB |χ)〉χ
where the average〈·〉χ is over all sequences of two colours.

Proof. Let t+n (vR, vB |χ |[hbht ]) be the number of positive trees coloured lexicographically by
the sequenceχ of two colours (say red and blue), withvR R-visits andvB B-visits, and with
its bottom vertex withz-coordinatehb, and top vertex withz-coordinateht . A tree counted by
t+n (vR−wR, vB−wB |χ0|[hh]) can be concatenated with a tree counted byt+m(wR,wB |χ1|[hh])
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(by translating the second tree until its bottom vertex is one step in thex-direction from the
top vertex of the first tree, and then joining them by adding a single edge). The resulting tree is
coloured by a sequenceχ ′ = χ0χ1 composed of all the colours inχ0χ1, and which is uniquely
determined byχ0χ1 for each pair of trees (that is, givenχ ′ and the concatenated tree, one can
uniquely recoverχ0χ1). Thus

n+1∑
wR,wB=0

t+n (vR − wR, vB − wB |χ0|[hh])t+m(wR,wB |χ1|[hh]) 6 t+n+m+1(vR, vB |χ0χ1|[hh]).

Multiply this by eαRvR+αBvB and sum overvR andvB . The result is

Z+
n(αR, αB |χ0|[hh])Z+

m(αR, αB |χ1|[hh]) 6 Z+
n+m+1(αR, αB |χ0χ1|[hh]).

Take logarithms, and average over all possible sequencesχ0χ1 of colours:

〈logZ+
n(αR, αB |χ |[hh])〉χ + 〈logZ+

m(αR, αB |χ |[hh])〉χ 6 〈logZ+
n+m(αR, αB |χ |[hh])〉χ .

Thus,〈logZ+
n(αR, αB |χ |[hh])〉χ is a super-additive function, and by the fundamental theorem

of superadditive functions [14] the limit

Fqd (αR, αB |χ |[hh]) = lim
n→∞

1

n
〈logZ+

n(αR, αB |χ |[hh])〉χ
exists. There is a most popular value ofh, sayh∗, so define

Fqd (αR, αB) = lim
n→∞

1

n
〈logZ+

n(αR, αB |χ |[h∗h∗])〉χ . (25)

Next, consider the partition functionZ+
n(αR, αB |χ |[hbht ]), and let [h∗bh

∗
t ] be the most popular

choice for [hbht ]. Then the following is true. In the first place,

Z+
n(αR, αB |χ |[h∗h∗]) 6 Z+

n(αR, αB |χ |[h∗bh∗t ])
and secondly,

[Z+
n(αR, αB |χ |[h∗bh∗t ])]2 6 Z+

2n+1(αR, αB |χ |[h∗bh∗b]) 6 Z+
2n+1(αR, αB |χ |[h∗h∗])

and the first inequality in the last expressions is found by taking two trees counted by
Z+
n(αR, αB |χ |[h∗bh∗t ]), reflecting one through the hyperplanex = 0, and then concatenating

them. Comparing this with equation (25) shows that the limiting free energy in the averaged
quenched ensemble exists as claimed. �

That there is an adsorption transition in this model is seen as follows: First of all,
each tree counted byt+n (vR, vB |χ) can be translated one step in theZ-direction to show that
t+n (vR, vB |χ) 6 t+n (0, 0|χ). Thus, notice thatt+n (0, 0|χ) 6 Z+

n(αR, αB |χ), and forαR 6 0 and
αB 6 0,Z+

n(αR, αB |χ) 6
∑

vR,vB
t+n (0, 0|χ)eαRvR+αBvB 6 (n + 1)t+n (0, 0|χ). Take logarithms

and the average ofχ to obtain

〈log t+n (0, 0|χ)〉χ 6 〈logZ+
n(αR, αB |χ)〉χ 6 〈log((n + 1)t+n (0, 0|χ))〉χ . (26)

If this is divided byn, andn→∞, then the result is that

Fqd (αR, αB) = Fqd (0, 0) ∀αR 6 0 ∀αB 6 0. (27)

On the other hand, notice that the average number (over all colourings) ofvR andvB is(n+1)/2.
Find a lower bound on the partition function by only taking trees withvR + vB = n + 1; this
gives ∑

vR,vB

t+n (vR, vB |χ)eαRvR+αBvB >
∑
vR,vB

t+n (vR, vB |χ)eαRvR+αBvB δvR+vB=(n+1). (28)
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The second term corresponds to all those trees which have every vertex a visit, and there is
at least one such tree. Thus ifvR(χ) andvB(χ) are the numbers ofR- andB-vertices in the
colouring byχ , then equation (28) shows that∑

vR,vB

t+n (vR, vB |χ)eαRvR+αBvB > eαRvR(χ)+αBvB(χ). (29)

Take logarithms, and average overχ to obtain

〈log
∑
vR,vB

t+n (vR, vB |χ)eαRvR+αBvB 〉χ > (αR + αB)(n + 1)/2 (30)

and if this is divided byn, andn→∞, then

Fqd (αR, αB) > (αR + αB)/2. (31)

Thus, comparison with equation (27) proves that there is a non-analyticity inFqd (αR, αB) at
critical values ofαR andαB , and that these correspond to adsorption transitions.

4.3. Self-averaging of adsorbing lexicographic quenched branched copolymers

The existence of the limiting free energy in the averaged lexicographic quenched ensemble
indicates that the self-averaging of adsorbing branched copolymers might be an interesting
question. The key result which will show that this model is self-averaging is presented in
lemma 1.

Lemma 1. Letχ0 be a fixed random sequence of independent identically distributed colours.
Then

lim inf
n→∞

1

n
logZ+

n(αR, αB |χ0) > Fqd (αR, αB)

almost surely.

Proof. Let n = Nm+ r, and decompose the sequenceχ0 intom partsχi , each of lengthN , so
thatχ0 =

∏∞
i=1 χi , where the product is taken as concatenation.

Consider trees counted byt+N−1(vi, wi |χi |[hh]), and concatenate them fromi = 1 to
i = m, using the same construction as in theorem 6. Lastly, concatenate a tree counted by
t+r (vr , wr |χr |[hh]) onto this as well, whereχr is the firstr colours in the sequenceχm+1. This
shows that

t+n (vR, vB |χ0|[hh])

>
∑
{vi },{wi }

[ m∏
i=1

t+N−1(vi, wi |χi |[hh])

]
t+r (vr , wr |χr |[hh])δvR−

∑
vi δvB−

∑
wi .

Multiply this by eαRvR+αBvB , and sum over{vi, wi}. Then

Z+
n(αR, αB |χ0|[hh]) >

[ m∏
i=1

Z+
N−1(αR, αB |χi |[hh])

]
Z+
r (αR, αB |χr |[hh]).

Take logarithms, and divide byn, and take the lim inf of the left-hand side.

lim inf
n→∞

1

n
logZn(αR, αB |χ0|[hh]) > lim inf

m→∞
1

m

m∑
i=1

1

N
logZ+

N−1(αR, αB |χi |[hh]).

This is true for any choice of [hh], and in particular, one may choose the most popular values,
and use equation (25) in the proof of theorem 6. Moreover, sinceZn(αR, αB |χ0|[h∗h∗]) 6
Zn(αR, αB |χ0) 6 n2Zn(αR, αB |χ0|[h∗h∗]), it follows that

lim inf
n→∞

1

n
logZn(αR, αB |χ0) >

〈
1

N
logZ+

N−1(αR, αB |χ |[h∗h∗])
〉
χ

→ Fqd (αR, αB)
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for almost all colouringsχ0, by the law of large numbers. �

Consider a random sequence of coloursχ = (χ1, χ2, . . .) whereχi ∈ Y , Y a probability
distribution, andχ ∈ X = Y × Y × · · · . ThenX is a probability space with uniform measure
µ(X) = 1. Moreover, theorem 6 implies that

Fqd (αR, αB) = lim
n→∞

1

n

∫
X

dχ logZ+
n(αR, αB |χ) (32)

while lemma 1 shows that

Fqd (αR, αB) 6 lim inf
n→∞

1

n
logZ+

n(αR, αB |χ0) (33)

for almost everyχ0 ∈ X. Next we show that this model is self-averaging; see also Orlandini
et al [19] for similar arguments leading to self-averaging in models of polymer collapse.

Theorem 7. For almost everyχ0 ∈ X,

lim
n→∞

1

n
logZ+

n(αR, αB |χ0) = Fqd (αR, αB).

Proof. Apply Fatou’s lemma to equation (32). This shows that

Fqd (αR, αB) = lim
n→∞

∫
X

dχ
1

n
logZ+

n(αR, αB |χ) >
∫
X

dχ lim inf
n→∞

1

n
logZ+

n(αR, αB |χ). (34)

Define the decompositionX = X− ∪X0 ∪X+ of X into disjoint sets by

lim inf
n→∞

1

n
logZ+

n(αR, αB |χ) = Fqd (αR, αB)
for all χ ∈ X0,

lim inf
n→∞

1

n
logZ+

n(αR, αB |χ) < Fqd (αR, αB)
for all χ ∈ X− and

lim inf
n→∞

1

n
logZ+

n(αR, αB |χ) > Fqd (αR, αB)
for all χ ∈ X+. By equation (33),µ(X−) = 0. Suppose thatµ(X+) = a > 0, so that
µ(X0) = 1− a. Then∫
X

dχ lim inf
n→∞

1

n
logZ+

n(αR, αB |χ) > aFqd (αR, αB) + (1− a)Fqd (αR, αB) = Fqd (αR, αB).

This is in contradiction with equation (34), unlessa = 0. Thusµ(X+) = 0, and consequently,

Fqd (αR, αB) = lim inf
n→∞

1

n
logZ+

n(αR, αB |χ0)

for almost everyχ0 ∈ X. Next, suppose that

lim sup
n→∞

1

n
logZ+

n(αR, αB |χ) > Fqd (αR, αB)

for all χ ∈ U , whereµ(U) > 0. Then there is anεχ > 0 and an infinite set of integers{ni},
such that for eachni .

1

ni
logZ+

ni
(αR, αB |χ) > Fqd (αR, αB) + εχ/2.
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DefineTn = 1
ni+1

logZ+
ni+1
(αR, αB |χ) for ni < n 6 ni+1. Then for alln > n1,

Tn > Fqd (αR, αB) + εχ/2.

SinceTn is measurable onX, it follows by the Lebesgue dominated convergence theorem that∫
X

dχ lim
n→∞ Tn = lim

n→∞

∫
X

dχ Tn = lim
i→∞

∫
X

dχ
1

ni
logZ+

ni
(αR, αB |χ).

Thus, by theorem 6 the consequence is that

lim
n→∞

∫
X

dχ
1

n
logZ+

n(αR, αB |χ) > Fqd (αR, αB) +
1

2

∫
U

dχ εχ > Fqd (αR, αB).

This is in contradiction with equation (32), unlessµ(U) = 0. In other words,

lim
n→∞

1

n
logZ+

n(αR, αB |χ0) = Fqd (αR, αB)
for almost everyχ0 ∈ X. �

This completes a proof of self-averaging in this model. The existence of the limit
limn→∞[logZ+

n(αR, αB |χ0)/n] is also a consequence of the local super-additive ergodic
theorem of Akcoglu and Krengel [1]. Notice that the proof above is independent of the
Akcoglu and Krengel local ergodic theorem; it is indeed possible to give a second proof of
theorem 7 using the Akcoglu and Krengel local ergodic theorem, if it is first demonstrated that
logZ+

n(αR, αB |χ0) is a discrete super-additive process (for details, see [19]).

5. Conclusion

In this paper we considered several lattice models of branched copolymer adsorption. In
particular, we paid attention to the existence of limiting free energies and the occurance of
adsorption transitions. Questions similar to those in this paper had been studied for a self-
avoiding walk model of adsorbing linear copolymers. In particular, the existence of a limiting
free energy in the adsorption of block copolymers and strictly alternating copolymers, as well
as the presence of adsorption critical points in their phase diagrams had been studied [26]. The
same questions were considered for adsorbing random copolymers in the quenched average
and annealed average ensembles [18]. Moreover, it is also known that this model is self-
averaging [18], and this has been studied in the context of the Akcoglu and Krengel local
ergodic theorem for collapsing random copolymers as well [19].

As examples of models of quenched branched coploymers we discussed in this paper
branched alternating copolymers and branched block copolymers. We showed that there
exist limiting free energies and non-analyticities in these free energies which correspond
to adsorption transitions in the models. The location of the adsorption transiton critical
points are related and compared to the adsorption of branched homopolymers: we proved
that alternating copolymer cannot adsorb onto the hyperplane before a homopolymer and that
a block copolymer adsorbs at the same critical value of the fugacity as a homopolymer (this is
also known for a linear block copolymer [26]).

In the last section we studied the models of quenched and random branched copolymers.
We showed that the annealed model of random branched copolymer adsorption is equivalent
to homopolymer adsorption. As a simple model, we also studied alternating lexicographic
quenched branched copolymers. Similar to the case of quenched alternating branched
copolymers, this model cannot adsorb onto the hyperplane before a homopolymer. Moreover,
the limiting averaged quenched free energy exists and it is non-analytic so that the system
exhibits a adsorption transition. Lastly, the lexicographic quenched model of adsorbing
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branched copolymers is self-averaging: the limiting averaged quenched free energy is equal
to the limiting free energy for almost all sequences of colours.
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